Basic Concepts in Matrix Algebra

- An column array of \(p \) elements is called a vector of dimension \(p \) and is written as
 \[
 x_{p \times 1} = \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_p
 \end{bmatrix}.
 \]

- The transpose of the column vector \(x_{p \times 1} \) is row vector
 \[
 x' = [x_1 \ x_2 \ \ldots \ x_p]
 \]

- A vector can be represented in \(p \)-space as a directed line with components along \(p \) axes.

Basic Matrix Concepts (cont’d)

- Two vectors can be added if they have the same dimension. Addition is carried out elementwise.
 \[
 x + y = \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_p
 \end{bmatrix} + \begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_p
 \end{bmatrix} = \begin{bmatrix}
 x_1 + y_1 \\
 x_2 + y_2 \\
 \vdots \\
 x_p + y_p
 \end{bmatrix}
 \]

- A vector can be contracted or expanded if multiplied by a constant \(c \). Multiplication of a matrix by a scalar:
 \[
 cx = c \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_p
 \end{bmatrix} = \begin{bmatrix}
 cx_1 \\
 cx_2 \\
 \vdots \\
 cx_p
 \end{bmatrix}
 \]

Examples

\[
\begin{align*}
 x &= \begin{bmatrix} 2 \\ 1 \\ -4 \end{bmatrix} \quad \text{and} \quad x' = [2 \ 1 \ -4] \\
 6x &= 6 \times \begin{bmatrix} 2 \\ 1 \\ -4 \end{bmatrix} = \begin{bmatrix} 6 \times 2 \\ 6 \times 1 \\ 6 \times (-4) \end{bmatrix} = \begin{bmatrix} 12 \\ 6 \\ -24 \end{bmatrix} \\
 x + y &= \begin{bmatrix} 2 \\ 1 \\ -4 \end{bmatrix} + \begin{bmatrix} 5 \\ -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 + 5 \\ 1 - 2 \\ -4 + 0 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \\ -4 \end{bmatrix}
\end{align*}
\]
Basic Matrix Concepts (cont’d)

• The length of a vector \mathbf{x} is the Euclidean distance from the origin
 \[L_{\mathbf{x}} = \sqrt{\sum_{j=1}^{p} x_j^2} \]

• Multiplication of a vector \mathbf{x} by a constant c changes the length:
 \[L_{c\mathbf{x}} = \sqrt{\sum_{j=1}^{p} c^2 x_j^2} = |c| \sqrt{\sum_{j=1}^{p} x_j^2} = |c| L_{\mathbf{x}} \]

• If $c = L_{\mathbf{x}}^{-1}$, then $c\mathbf{x}$ is a vector of unit length.

Examples

The length of $\mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ -4 \\ -2 \end{bmatrix}$ is
 \[L_{\mathbf{x}} = \sqrt{(2)^2 + (1)^2 + (-4)^2 + (-2)^2} = \sqrt{25} = 5 \]

Then
 \[z = \frac{1}{5} \times \begin{bmatrix} 2 \\ 1 \\ -4 \\ -2 \end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.2 \\ -0.8 \\ -0.4 \end{bmatrix} \]

is a vector of unit length.

Angle Between Vectors

• Consider two vectors \mathbf{x} and \mathbf{y} in two dimensions. If θ_1 is the angle between \mathbf{x} and the horizontal axis and $\theta_2 > \theta_1$ is the angle between \mathbf{y} and the horizontal axis, then
 \[\cos(\theta_1) = \frac{x_1}{L_{\mathbf{x}}} \quad \cos(\theta_2) = \frac{y_1}{L_{\mathbf{y}}} \]
 \[\sin(\theta_1) = \frac{x_2}{L_{\mathbf{x}}} \quad \sin(\theta_2) = \frac{y_2}{L_{\mathbf{y}}} \]

If θ is the angle between \mathbf{x} and \mathbf{y}, then
 \[\cos(\theta) = \cos(\theta_2 - \theta_1) = \cos(\theta_2) \cos(\theta_1) + \sin(\theta_2) \sin(\theta_1) \]

Then
 \[\cos(\theta) = \frac{x_1 y_1 + x_2 y_2}{L_{\mathbf{x}} L_{\mathbf{y}}} = \frac{\mathbf{x}^T \mathbf{y}}{\sqrt{\mathbf{x}^T \mathbf{x}} \sqrt{\mathbf{y}^T \mathbf{y}}} \]

Angle Between Vectors (cont’d)
Inner Product

- The inner product between two vectors x and y is
 \[x'y = \sum_{j=1}^{p} x_j y_j. \]

- Then $L_x = \sqrt{x'x}$, $L_y = \sqrt{y'y}$ and
 \[\cos(\theta) = \frac{x'y}{\sqrt{(x'x)(y'y)}}. \]

- Since $\cos(\theta) = 0$ when $x'y = 0$ and $\cos(\theta) = 0$ for $\theta = 90$ or $\theta = 270$, then the vectors are perpendicular (orthogonal) when $x'y = 0$.

Linear Dependence

- Two vectors, x and y, are *linearly dependent* if there exist two constants c_1 and c_2, not both zero, such that
 \[c_1 x + c_2 y = 0 \]
- If two vectors are linearly dependent, then one can be written as a linear combination of the other. From above:
 \[x = (c_2/c_1)y \]
- k vectors, x_1, x_2, \ldots, x_k, are linearly dependent if there exist constants (c_1, c_2, \ldots, c_k) not all zero such that
 \[\sum_{j=1}^{k} c_j x_j = 0 \]
- Vectors of the same dimension that are not linearly dependent are said to be *linearly independent*.

Linear Independence-example

Let
\[x_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad x_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \]

Then $c_1 x_1 + c_2 x_2 + c_3 x_3 = 0$ if
\[
\begin{align*}
 c_1 + c_2 + c_3 &= 0 \\
 2c_1 + 0 - 2c_3 &= 0 \\
 c_1 - c_2 + c_3 &= 0
\end{align*}
\]

The unique solution is $c_1 = c_2 = c_3 = 0$, so the vectors are linearly independent.

Projections

- The projection of x on y is defined by
 \[y = \frac{x'y}{y'y} y = \frac{x'y}{L_y} L_y y. \]
- The length of the projection is
 \[\text{Length of projection} = \frac{|x'y|}{L_y} = \frac{L_x|x'y|}{L_x L_y} = L_x|\cos(\theta)|, \]
 where θ is the angle between x and y.

68 69 70 71
Matrices

A matrix A is an array of elements a_{ij} with n rows and p columns:

$$
A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1p} \\
 a_{21} & a_{22} & \cdots & a_{2p} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{np}
\end{bmatrix}
$$

The transpose A' has p rows and n columns. The j-th row of A' is the j-th column of A:

$$
A' = \begin{bmatrix}
 a_{11} & a_{21} & \cdots & a_{n1} \\
 a_{12} & a_{22} & \cdots & a_{n2} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{1p} & a_{2p} & \cdots & a_{np}
\end{bmatrix}
$$

Matrix Algebra

- Multiplication of A by a constant c is carried out element by element.

$$
cA = \begin{bmatrix}
 ca_{11} & ca_{12} & \cdots & ca_{1p} \\
 ca_{21} & ca_{22} & \cdots & ca_{2p} \\
 \vdots & \vdots & \ddots & \vdots \\
 ca_{n1} & ca_{n2} & \cdots & ca_{np}
\end{bmatrix}
$$

Matrix Addition

Two matrices $A_{nxp} = \{a_{ij}\}$ and $B_{nxp} = \{b_{ij}\}$ of the same dimensions can be added element by element. The resulting matrix is $C_{nxp} = \{c_{ij}\} = \{a_{ij} + b_{ij}\}$

$$
C = A + B
= \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1p} \\
 a_{21} & a_{22} & \cdots & a_{2p} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{np}
\end{bmatrix}
+ \begin{bmatrix}
 b_{11} & b_{12} & \cdots & b_{1p} \\
 b_{21} & b_{22} & \cdots & b_{2p} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n1} & b_{n2} & \cdots & b_{np}
\end{bmatrix}
= \begin{bmatrix}
 a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1p} + b_{1p} \\
 a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2p} + b_{2p} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} + b_{n1} & a_{n2} + b_{n2} & \cdots & a_{np} + b_{np}
\end{bmatrix}
$$

Examples

$$
\begin{bmatrix}
 2 & 1 & -4 \\
 5 & 7 & 0
\end{bmatrix}^\prime = \begin{bmatrix}
 2 & 5 \\
 1 & 7 \\
 -4 & 0
\end{bmatrix}
$$

$$
6 \times \begin{bmatrix}
 2 & 1 & -4 \\
 5 & 7 & 0
\end{bmatrix} = \begin{bmatrix}
 12 & 6 & -24 \\
 30 & 42 & 0
\end{bmatrix}
$$

$$
\begin{bmatrix}
 2 & -1 \\
 0 & 3
\end{bmatrix} + \begin{bmatrix}
 2 & 1 \\
 5 & 7
\end{bmatrix} = \begin{bmatrix}
 4 & 0 \\
 5 & 10
\end{bmatrix}
$$
Matrix Multiplication

- Multiplication of two matrices $A_{n \times p}$ and $B_{m \times q}$ can be carried out only if the matrices are compatible for multiplication:
 - $A_{n \times p} \times B_{m \times q}$: compatible if $p = m$.
 - $B_{m \times q} \times A_{n \times p}$: compatible if $q = n$.

The element in the i-th row and the j-th column of $A \times B$ is the inner product of the i-th row of A with the j-th column of B.

Identity Matrix

- An identity matrix, denoted by I, is a square matrix with 1's along the main diagonal and 0's everywhere else. For example,

 $I_{2 \times 2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $I_{3 \times 3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- If A is a square matrix, then $AI = IA = A$.

- $I_{n \times n}A_{n \times p} = A_{n \times p}$ but $A_{n \times p}I_{n \times n}$ is not defined for $p \neq n$.

Multiplication Examples

- \[
\begin{bmatrix} 2 & 0 & 1 \\ 5 & 1 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 4 \\ -1 & 3 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 10 \\ 4 & 29 \end{bmatrix}
\]

- \[
\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 4 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 11 \\ 2 & 29 \end{bmatrix}
\]

- \[
\begin{bmatrix} 1 & 4 \\ -1 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 22 & 13 \\ 13 & 8 \end{bmatrix}
\]

Symmetric Matrices

- A square matrix is symmetric if $A = A'$.

- If a square matrix A has elements $\{a_{ij}\}$, then A is symmetric if $a_{ij} = a_{ji}$.

- Examples

 \[
 \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} \quad \begin{bmatrix} 5 & 1 & -3 \\ 1 & 12 & -5 \\ -3 & -5 & 9 \end{bmatrix}
 \]
Inverse Matrix

- Consider two square matrices $A_{k \times k}$ and $B_{k \times k}$. If $AB = BA = I$ then B is the inverse of A, denoted A^{-1}.

- The inverse of A exists only if the columns of A are linearly independent.

- If $A = \text{diag}(a_{ij})$ then $A^{-1} = \text{diag}(1/a_{ij})$.

Orthogonal Matrices

- A square matrix Q is orthogonal if $QQ' = Q'Q = I$, or $Q' = Q^{-1}$.

- If Q is orthogonal, its rows and columns have unit length ($q'_j q_j = 1$) and are mutually perpendicular ($q'_j q_k = 0$ for any $j \neq k$).

Eigenvalues and Eigenvectors

- A square matrix A has an eigenvalue λ with corresponding eigenvector $z \neq 0$ if $Az = \lambda z$.

- The eigenvalues of A are the solution to $|A - \lambda I| = 0$.

- A normalized eigenvector (of unit length) is denoted by e.

- A $k \times k$ matrix A has k pairs of eigenvalues and eigenvectors $\lambda_1, e_1, \lambda_2, e_2, \ldots, \lambda_k, e_k$ where $e'_i e_i = 1$, $e'_j e_j = 0$ and the eigenvectors are unique up to a change in sign unless two or more eigenvalues are equal.
Spectral Decomposition

- Eigenvectors and eigenvectors will play an important role in this course. For example, principal components are based on the eigenvalues and eigenvectors of sample covariance matrices.

- The spectral decomposition of a $k \times k$ symmetric matrix A is

\[
A = \lambda_1 e_1 e_1' + \lambda_2 e_2 e_2' + \ldots + \lambda_k e_k e_k'
\]

\[
= [e_1 \ e_2 \ \ldots \ e_k] \begin{bmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_k
\end{bmatrix} [e_1 \ e_2 \ \ldots \ e_k]'
\]

\[= P \Lambda P'
\]

Determinant and Trace

- The trace of a $k \times k$ matrix A is the sum of the diagonal elements, i.e., $\text{trace}(A) = \sum_{i=1}^{k} a_{ii}$

- The trace of a square, symmetric matrix A is the sum of the eigenvalues, i.e., $\text{trace}(A) = \sum_{i=1}^{k} a_{ii} = \sum_{i=1}^{k} \lambda_i$

- The determinant of a square, symmetric matrix A is the product of the eigenvalues, i.e., $|A| = \prod_{i=1}^{k} \lambda_i$

Rank of a Matrix

- The rank of a square matrix A is
 - The number of linearly independent rows
 - The number of linearly independent columns
 - The number of non-zero eigenvalues

- The inverse of a $k \times k$ matrix A exists, if and only if $\text{rank}(A) = k$

 i.e., there are no zero eigenvalues

Positive Definite Matrix

- For a $k \times k$ symmetric matrix A and a vector $x = [x_1, x_2, \ldots, x_k]'$ the quantity $x'Ax$ is called a quadratic form

- Note that $x'Ax = \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij}x_ix_j$

- If $x'Ax \geq 0$ for any vector x, both A and the quadratic form are said to be non-negative definite.

- If $x'Ax > 0$ for any vector $x \neq 0$, both A and the quadratic form are said to be positive definite.
Example 2.11

• Show that the matrix of the quadratic form \(3x_1^2 + 2x_2^2 - 2\sqrt{2}x_1x_2\) is positive definite.

• For
 \[
 A = \begin{bmatrix}
 3 & -\sqrt{2} \\
 -\sqrt{2} & 2
 \end{bmatrix},
 \]
 the eigenvalues are \(\lambda_1 = 4, \lambda_2 = 1\). Then \(A = 4e_1e_1' + e_2e_2'\).
 Write
 \[
 x'Ax = 4x'e_1e_1'x + x'e_2e_2'x = 4y_1^2 + y_2^2 \geq 0,
 \]
 and is zero only for \(y_1 = y_2 = 0\).

Distance and Quadratic Forms

• For \(x = [x_1, x_2, ..., x_p]'\) and a \(p \times p\) positive definite matrix \(A\),
 \[
 d^2 = x'Ax > 0
 \]
 when \(x \neq 0\). Thus, a positive definite quadratic form can be interpreted as a squared distance of \(x\) from the origin and vice versa.

• The squared distance from \(x\) to a fixed point \(\mu\) is given by the quadratic form
 \[
 (x - \mu)'A(x - \mu).
 \]

Example 2.11 (cont’d)

• \(y_1\) and \(y_2\) cannot be zero unless \(x_1\) and \(x_2\) are zero because
 \[
 \begin{bmatrix}
 y_1 \\
 y_2
 \end{bmatrix} = \begin{bmatrix}
 e_1' \\
 e_2'
 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = P_{2 \times 2}x_{2 \times 1}
 \]
 with \(P\) orthonormal so that \((P)'^{-1} = P\). Then \(x = Py\) and since \(x \neq 0\) it follows that \(y \neq 0\).

• Using the spectral decomposition, we can show that:
 - \(A\) is positive definite if all of its eigenvalues are positive.
 - \(A\) is non-negative definite if all of its eigenvalues are \(\geq 0\).

Distance and Quadratic Forms (cont’d)

• We can interpret distance in terms of eigenvalues and eigenvectors of \(A\) as well. Any point \(x\) at constant distance \(c\) from the origin satisfies
 \[
 x'Ax = x'(\sum_{j=1}^{p} \lambda_j e_j e_j')x = \sum_{j=1}^{p} \lambda_j (x'e_j)^2 = c^2,
 \]
 the expression for an ellipsoid in \(p\) dimensions.

• Note that the point \(x = c\lambda_1^{-1/2}e_1\) is at a distance \(c\) (in the direction of \(e_1\)) from the origin because it satisfies \(x'Ax = c^2\). The same is true for points \(x = c\lambda_j^{-1/2}e_j, j = 1, ..., p\). Thus, all points at distance \(c\) lie on an ellipsoid with axes in the directions of the eigenvectors and with lengths proportional to \(\lambda_j^{-1/2}\).
Distance and Quadratic Forms (cont’d)

Square-Root Matrices

• Spectral decomposition of a symmetric positive definite matrix A yields

$$A = \sum_{j=1}^{p} \lambda_j e_j e'_j = P\Lambda P',$$

with $\Lambda_{k \times k} = \text{diag}(\lambda_j)$, all $\lambda_j > 0$, and $P_{k \times k} = [e_1 \ e_2 \ ... \ e_p]$ an orthonormal matrix of eigenvectors. Then

$$A^{-1} = P\Lambda^{-1}P' = \sum_{j=1}^{p} \frac{1}{\lambda_j} e_j e'_j$$

Square-Root Matrices

The square root of a symmetric positive definite matrix A has the following properties:

1. Symmetry: $(A^{1/2})' = A^{1/2}$
2. $A^{1/2}A^{1/2} = A$
3. $A^{-1/2} = \sum_{j=1}^{p} \lambda_j^{-1/2} e_j e'_j = P\Lambda^{-1/2}P'$
4. $A^{1/2}A^{-1/2} = A^{-1/2}A^{1/2} = I$
5. $A^{-1/2}A^{-1/2} = A^{-1}$
Random Vectors and Matrices

- A random matrix (vector) is a matrix (vector) whose elements are random variables.
- If $X_{n \times p}$ is a random matrix, the expected value of X is the $n \times p$ matrix

$$E(X) = \begin{bmatrix} E(X_{11}) & E(X_{12}) & \cdots & E(X_{1p}) \\ E(X_{21}) & E(X_{22}) & \cdots & E(X_{2p}) \\ \vdots & \vdots & \ddots & \vdots \\ E(X_{n1}) & E(X_{n2}) & \cdots & E(X_{np}) \end{bmatrix},$$

where

$$E(X_{ij}) = \int_{-\infty}^{\infty} x_{ij} f_{ij}(x_{ij}) dx_{ij}$$

with $f_{ij}(x_{ij})$ the density function of the continuous random variable X_{ij}. If X is a discrete random variable, we compute its expectation as a sum rather than an integral.

Mean Vectors and Covariance Matrices

- Suppose that X is $p \times 1$ (continuous) random vector drawn from some p-dimensional distribution.
- Each element of X, say X_j, has its own marginal distribution with marginal mean μ_j and variance σ_{jj} defined in the usual way:

$$\mu_j = \int_{-\infty}^{\infty} x_j f_j(x_j) dx_j$$
$$\sigma_{jj} = \int_{-\infty}^{\infty} (x_j - \mu_j)^2 f_j(x_j) dx_j$$

Mean Vectors and Covariance Matrices (cont’d)

- To examine association between a pair of random variables we need to consider their joint distribution.
- A measure of the linear association between pairs of variables is given by the covariance

$$\sigma_{jk} = E[(X_j - \mu_j)(X_k - \mu_k)]$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_j - \mu_j)(x_k - \mu_k)f_{jk}(x_j,x_k) dx_j dx_k.$$
Mean Vectors and Covariance Matrices (cont’d)

- If the joint density function $f_{jk}(x_j, x_k)$ can be written as the product of the two marginal densities, e.g.,
 \[f_{jk}(x_j, x_k) = f_j(x_j)f_k(x_k), \]
 then X_j and X_k are independent.

- More generally, the p-dimensional random vector X has mutually independent elements if the p-dimensional joint density function can be written as the product of the p univariate marginal densities.

- If two random variables X_j and X_k are independent, then their covariance is equal to 0. [Converse is not always true.]

Mean Vectors and Covariance Matrices (cont’d)

- We use μ to denote the $p \times 1$ vector of marginal population means and use Σ to denote the $p \times p$ population variance-covariance matrix:
 \[\Sigma = E[(X - \mu)(X - \mu)^\top]. \]

- If we carry out the multiplication (outer product) then Σ is equal to:
 \[
 E \begin{bmatrix}
 (X_1 - \mu_1)^2 & (X_1 - \mu_1)(X_2 - \mu_2) & \cdots & (X_1 - \mu_1)(X_p - \mu_p) \\
 (X_2 - \mu_2)(X_1 - \mu_1) & (X_2 - \mu_2)^2 & \cdots & (X_2 - \mu_2)(X_p - \mu_p) \\
 \vdots & \vdots & \ddots & \vdots \\
 (X_p - \mu_p)(X_1 - \mu_1) & (X_p - \mu_p)(X_2 - \mu_2) & \cdots & (X_p - \mu_p)^2
 \end{bmatrix}.
 \]

Correlation Matrix

- The population correlation matrix is the $p \times p$ matrix with off-diagonal elements equal to ρ_{jk} and diagonal elements equal to 1.
 \[
 \begin{bmatrix}
 1 & \rho_{12} & \cdots & \rho_{1p} \\
 \rho_{21} & 1 & \cdots & \rho_{2p} \\
 \vdots & \vdots & \ddots & \vdots \\
 \rho_{p1} & \rho_{p2} & \cdots & 1
 \end{bmatrix}.
 \]

- Since $\rho_{ij} = \rho_{ji}$ the correlation matrix is symmetric.

- The correlation matrix is also non-negative definite.
Correlation Matrix (cont’d)

- The $p \times p$ population standard deviation matrix $V^{1/2}$ is a diagonal matrix with $\sqrt{\sigma_{jj}}$ along the diagonal and zeros in all off-diagonal positions. Then

$$\Sigma = V^{1/2} P V^{1/2}$$

and the population correlation matrix is

$$(V^{1/2})^{-1} \Sigma (V^{1/2})^{-1}$$

- Given Σ, we can easily obtain the correlation matrix

Partitioning Random vectors

- If we partition the random $p \times 1$ vector X into two components X_1, X_2 of dimensions $q \times 1$ and $(p-q) \times 1$ respectively, then the mean vector and the variance-covariance matrix need to be partitioned accordingly.

- Partitioned mean vector:

$$E(X) = E \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} E(X_1) \\ E(X_2) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

- Partitioned variance-covariance matrix:

$$\Sigma = \begin{bmatrix} \text{Var}(X_1) & \text{Cov}(X_1, X_2) \\ \text{Cov}(X_2, X_1) & \text{Var}(X_2) \end{bmatrix} = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12}^T & \Sigma_{22} \end{bmatrix},$$

where Σ_{11} is $q \times q$, Σ_{12} is $q \times (p-q)$ and Σ_{22} is $(p-q) \times (p-q)$.

Partitioning Covariance Matrices (cont’d)

- Σ_{11}, Σ_{22} are the variance-covariance matrices of the sub-vectors X_1, X_2, respectively. The off-diagonal elements in those two matrices reflect linear associations among elements within each sub-vector.

- There are no variances in Σ_{12}, only covariances. These covariances reflect linear associations between elements in the two different sub-vectors.

Linear Combinations of Random variables

- Let X be a $p \times 1$ vector with mean μ and variance covariance matrix Σ, and let c be a $p \times 1$ vector of constants. Then the linear combination $c'X$ has mean and variance:

$$E(c'X) = c'\mu, \quad \text{and} \quad \text{Var}(c'X) = c'\Sigma c$$

- In general, the mean and variance of a $q \times 1$ vector of linear combinations $Z = C_{q \times p}X_{p \times 1}$ are

$$\mu_Z = C\mu_X \quad \text{and} \quad \Sigma_Z = C\Sigma_X C'.$$
Cauchy-Schwarz Inequality

- We will need some of the results below to derive some maximization results later in the course.

Cauchy-Schwarz inequality Let \(b \) and \(d \) be any two \(p \times 1 \) vectors. Then,
\[
(b'd)^2 \leq (b'b)(d'd)
\]
with equality only if \(b = cd \) for some scalar constant \(c \).

Proof: The equality is obvious for \(b = 0 \) or \(d = 0 \). For other cases, consider \(b - cd \) for any constant \(c \neq 0 \). Then if \(b - cd \neq 0 \), we have
\[
0 < (b - cd)'(b - cd) = b'b - 2c(b'd) + c^2d'd,
\]
since \(b - cd \) must have positive length.

Extended Cauchy-Schwarz Inequality

If \(b \) and \(d \) are any two \(p \times 1 \) vectors and \(B \) is a \(p \times p \) positive definite matrix, then
\[
(b'd)^2 \leq (b'Bb)(d'B^{-1}d)
\]
with equality if and only if \(b = cB^{-1}d \) or \(d = cBb \) for some constant \(c \).

Proof: Consider \(B^{1/2} = \sum_{i=1}^{p} \sqrt{\lambda_i} e_i e_i' \), and \(B^{-1/2} = \sum_{i=1}^{p} \frac{1}{\sqrt{\lambda_i}} e_i e_i' \). Then we can write
\[
b'd = b'd = b' B^{1/2} B^{-1/2} d = (B^{1/2} b)' (B^{-1/2} d) = b^* d^*.
\]

To complete the proof, simply apply the Cauchy-Schwarz inequality to the vectors \(b^* \) and \(d^* \).

Cauchy-Schwarz Inequality

We can add and subtract \((b'd)^2/(d'd) \) to obtain
\[
0 < b'b - 2c(b'd) + c^2d'd = b'b - (b'd)^2/d'd + (d'd)(c - b'd/d'd)^2
\]
Since \(c \) can be anything, we can choose \(c = b'd/d'd \). Then,
\[
0 < b'b - (b'd)^2/d'd \Rightarrow (b'd)^2 < (b'b)(d'd)
\]
for \(b \neq cd \) (otherwise, we have equality).

Optimization

Let \(B \) be positive definite and let \(d \) be any \(p \times 1 \) vector. Then
\[
\max_{x \neq 0} \frac{(x'd)^2}{x' B x} = d' B^{-1} d
\]
is attained when \(x = cB^{-1}d \) for any constant \(c \neq 0 \).

Proof: By the extended Cauchy-Schwarz inequality: \((x'd)^2 \leq (x'Bx)(d'B^{-1}d) \). Since \(x \neq 0 \) and \(B \) is positive definite, \(x'Bx > 0 \) and we can divide both sides by \(x'Bx \) to get an upper bound
\[
\frac{(x'd)^2}{x'Bx} \leq d' B^{-1} d.
\]
Differentiating the left side with respect to \(x \) shows that maximum is attained at \(x = cB^{-1}d \).
Maximization of a Quadratic Form on a Unit Sphere

• B is positive definite with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$ and associated eigenvectors (normalized) e_1, e_2, \cdots, e_p. Then

max $x' B x$ is attained when $x = e_k$.

Furthemore, for $k = 1, 2, \ldots, p - 1$,

max $x' B x$ is attained when $x \perp e_1, e_2, \cdots, e_k$.

See proof at end of chapter 2 in the textbook (pages 80-81).